МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА с.п. Братское» НАДТЕРЕЧНОГО МУНИЦИПАЛЬНОГО РАЙОНА ЧЕЧЕНСКОЙ РЕСПУБЛИКИ

РАССМОТРЕНО	СОГЛАСОВАНО	УТВЕРЖДАЮ
на заседании ШМО	Зам. Директора по УВР	Директор МБОУ «СОШ с.п.
/Усманов И.С-М/		Братское»
Протокол №1	/Л. М. Рагадаев/	/Р. А. Дадахов/
от «19» августа 2023г.		
-	«18» августа 2023г.	Пр.№1 от 18.08.2023г.
	_	

РАБОЧАЯ ПРОГРАММА

внеурочной деятельности «Занимательная физика» Точка роста

по ООП основного общего образования

Уровень общего образования (класс): 8 класс

Количество часов: 35 часов (8 класс)

Учитель: Таймусханова М. М.

Пояснительная записка

Рабочая программа внеурочной деятельности по физике для 8 класса составлена на основе примерной программы по физике для 7 – 9 классов (под редакцией Кузнецова А.А.) и соответствует

- Федеральному Закону «Об образовании в Российской Федерации» №273-ФЗ от 29.12.2012 года;
- -Федеральному образовательному стандарту основного общего образования, утверждённому приказом Министерства образования и науки РФ №1897 от 17.12.2010 года;
- -Приказу Министерства образования и науки РФ №1577 от 31.12.2015 г» О внесении изменений в федеральный образовательный стандарт основного общего образования, утверждённый приказом Министерства образования и науки РФ» №1897 от 17.12.2010 года»
- -Образовательной программе основного общего образования;
- -Учебному плану ОУ;
- Примерной программе основного общего образования по физике (базовый уровень).

Программа рассчитана на 34 часа — 1 час в неделю в 8 классе. Данная рабочая программа внеурочной деятельности по физике для 7 — 9 классов составлена на основе ООП ООО МБОУ «СОШ с. п. Братское» и с учётом методических рекомендаций по созданию и функционированию в общеобразовательных организациях, расположенных в сельской местности и малых городах, центров образования естественно-научной и технологичной направленностей («Точка роста») (утверждены распоряжением Министерства просвещения Российской Федерации от 12.01.2021 г. № Р-6) и предусматривает проведение занятий с использованием оборудования центра «Точка роста».

Цель программы:

Формирование и развитие личного опыта обучающихся в области естествознания, приучение к научному познанию мира, приобретение навыков и способов практической деятельности; приобретение опыта индивидуальной и коллективной деятельности при проведении исследовательских работ; подготовка к систематическому, углубленному изучению курса физики.

Задачи на год обучения:

8 класс:

- □ развитие у учащихся познавательных интересов, интеллектуальных и творческих способностей в процессе решения практических задач и самостоятельного приобретения новых знаний;
- □ формирование и развитие у учащихся ключевых компетенций учебно познавательных, информационно-коммуникативных, социальных, и как следствие компетенций личностного самосовершенствования;
- □ формирование предметных и метапредметных результатов обучения, универсальных учебных действий.
- □ воспитание творческой личности, способной к освоению передовых технологий и созданию своих собственных разработок, к выдвижению новых идей и проектов;
- □ реализация деятельностного подхода к предметному обучению;
- □ в яркой и увлекательной форме расширять и углублять знания,
 полученные учащимися на уроках;
- □ показать использование знаний в практике, в жизни.

Планируемые результаты освоения программы внеурочной деятельности «Занимательная физика»

(с использованием оборудования «Точка роста») в 8 классах.

Метапредметные результаты

Обучающийся получит возможность для формирования следующих метапредметных результатов:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в

соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;

- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли, способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Личностные результаты

Обучающийся получит возможность для формирования следующих личностных результатов:

- развитие познавательных интересов, интеллектуальных и творческих способностей;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как к элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация образовательной деятельности на основе личностно ориентированного подхода;
- формирование ценностного отношения друг к другу, к учителю, к авторам открытий и изобретений, к результатам обучения.

Предметные результаты

Обучающийся получит возможность для формирования следующих предметных результатов:

- знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять

эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;

- умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
- коммуникативные умения: докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Условия реализации программы предполагают единство целей, содержания, форм и методов, обеспечивающих успешность процесса социальной адаптации учащихся к современному социуму.

В процессе реализации программы кружка планируется в полной мере задействовать возможности цифрового учебного оборудования составляющей комплекта центра образования естественно - научной направленности «Точка роста» МБОУ «СОШ с. п. Братское».

Материально-техническое обеспечение:

Датчик абсолютного давления.

Комплект сопутствующих элементов для экспериментов по механике: Набор № 1

- Весы электронные учебные
- Измерительный цилиндр (объем 250 мл)
- 2 пластиковых стакана (объем 300 мл каждый)
- Динамометр № 1 (предел измерения 1 H)
- Динамометр № 2 (предел измерения 5 Н)
- Груз цилиндрический из стали: $V=(25,0\pm0,3)$ см3, $m=(195\pm2)$ г, с крючком
- Груз цилиндрический из алюминиевого сплава: $V=(25,0\pm0,7)$ см3, $m=(70\pm2)$ г
- Груз цилиндрический из специального пластика: $V = (56,0 \pm 1,8)$ см3, $m = (66 \pm 2)$ г
- Груз цилиндрический из алюминиевого сплава: $V=(34,0\pm0,7)$ см3, $m=(95\pm2)$ г
- Поваренная соль в контейнере из ПВХ
- Палочка для перемешивания, нить

Набор № 2

- Штатив лабораторный с держателем
- Динамометр № 1 (предел измерения 1 Н)
- Динамометр № 2 (предел измерения 5 Н)
- 2 пружины на планшете: жèсткость пружины № 1 (50 ± 2) H/м, жèсткость пружины № 2 (10 ± 2) H/м
- 3 груза массой (100 ± 2) г каждый
- Набор грузов, обозначенных № 4, № 5, № 6 и закрепленных на крючке
- Линейка пластиковая (длина 300 мм)
- Транспортир металлический
- Брусок деревянный массой (50 \pm 5) г с крючком и нитью
- Направляющая с измерительной шкалой Набор № 3
- Штатив лабораторный с муфтой
- Рычаг с креплениями для грузов
- Блок подвижный
- Блок неподвижный
- Нить (длина не менее 1,2 м)
- 3 цилиндрических груза из стали массой (100 ± 2) г каждый
- Динамометр планшетный (предел измерения 5 Н)
- Линейка пластиковая (длина 300 мм)
- Транспортир металлический

Набор № 4

- Электронный секундомер с датчиками (укомплектован элементами питания)
- Магнитоуправляемые герконовые датчики секундомера (датчики с круговой зоной чувствительности)
- Механическая скамья (длина 700 мм)
- Брусок деревянный: $m = (50 \pm 2 \ \Gamma)$
- Штатив лабораторный с муфтой
- Транспортир металлический
- Нить (длина не менее 1,2 м)
- Лента мерная (длина 1000 мм)
- 4 цилиндрических груза из стали массой (100 ± 2) г каждый
- 2 пружины: жèсткость пружины № 1 (50 ± 2) H/м, жèсткость пружины № 2 (20 ± 2) H/м
- Груз цилиндрический массой (100 ± 2) г с крючком
- Трубка алюминиевая

Комплект сопутствующих элементов для экспериментов по молекулярной физике:

В состав комплекта входят следующие приборы и материалы.

- Калориметр
- Термометр
- Весы электронные
- Измерительный цилиндр (мензурка) с подстаканником из ПВХ (объем 250 мл)
- Груз цилиндрический из алюминиевого сплава массой (68 ± 2) г с крючком
- Груз цилиндрический из стали массой (189 \pm 2) г с крючком

Комплект сопутствующих элементов для экспериментов по электродинамике: В состав комплекта входят следующие приборы и материалы.

- Источник питания постоянного и переменного тока либо батарейный блок
- Вольтметр двухпредельный: предел измерения 3 B, цена деления шкалы C = 0.1 B; предел измерения 6 B, цена деления шкалы C = 0.2 B
- Амперметр двухпредельный: предел измерения 3 A, цена деления шкалы C = 0,1 A; предел измерения 0,6 A, цена деления шкалы C = 0.02 A
- Резистор R1 сопротивлением (4,7 \pm 0,5) Ом •Резистор R2 сопротивлением (5,7 \pm 0,6) Ом
- Резистор *R*3 сопротивлением $(8,2\pm0,8)$ Ом
- Набор из 3 проволочных резисторов
- Элемент электрической цепи (реостат) сопротивлением 10 Ом
- Ключ для размыкания и замыкания электрической цепи
- Комплект проводов
- Лампочка напряжением 4,8 В

Комплект сопутствующих элементов для экспериментов по оптике:

В состав комплекта входят следующие приборы и материалы

• Источник питания постоянного тока, выпрямитель с входным напряжением 36÷42 В или батарейный блок 1,5÷7,5 В с возможностью регулировки выходного напряжения

- Собирающая линза 1: фокусное расстояние $F_1 = (100 \pm 10)$ мм
- Собирающая линза 2: фокусное расстояние $F_2 = (50 \pm 5)$ мм
- Рассеивающая линза 3 (фокусное расстояние $F_3 = -(75 \pm 5)$ мм
- Линейка пластиковая (длина 300 мм)
- Экран стальной
- Направляющая с измерительной шкалой (длина 730 мм)
- Комплект проводов
- Ключ двухпозиционный для размыкания и замыкания электрической цепи
- Осветитель с источником света напряжением 3,5 В
- Щелевая диафрагма
- Слайд «Модель предмета» в рейтере
- Полуцилиндр
- Планшет на плотном листе А4 с круговым транспортиром

Профильный комплект оборудования центра «Точка роста» по физике:

В состав профильной цифровой лаборатории входят один беспроводной мультидатчикReleonAir «Физика-5», программное обеспечение ReleonLite и двухканальная приставка - осциллограф.

Датчик напряжения измеряет значения постоянного и переменного напряжения. В комплекте датчика находятся провода разного цвета с зажимами типа «крокодил» для подключения к электрическим схемам и штекерам для соединения с беспроводным мультидатчиком. Диапазон измерения выбирается в программном обеспечении сбора и обработки данных.

Датчик тока измеряет значения постоянного и переменного электрического тока. В комплекте датчика находятся провода разного цвета с зажимами типа «крокодил» для подключения к электрическим схемам и штекерам для соединения с беспроводным мультидатчиком.

Датчик магнитного поля измеряет значение индукции магнитного поля. Он выполнен в виде выносного зонда. Чувствительный модуль датчика построен на интегральном элементе Холла и смонтирован в торцевой части зонда.

Датчик температуры выполнен в виде выносного и герметичного температурного зонда. Датчик имеет расширенный температурный диапазон, позволяющий измерять температуру при нагревании, кипении и кристаллизации различных материалов. Чувствительный элемент датчика представляет собой полупроводниковый высокочувствительный термистор, который размещèн на конце зонда. Пустоты наконечника заполнены термопастой.

Датчик абсолютного давления производит измерения абсолютного давления. Чувствительный элемент датчика выполнен на базе монолитного кремниевого пьезорезистора с внедренной тензорезистивной структурой, которая позволяет исключить возможные погрешности и достигнуть необходимой точности измерений. В комплект входит гибкая герметичная трубка для подключения штуцера датчика к лабораторному оборудованию.

Два резистора сопротивлением по 360 Ом, два резистора сопротивлением по 1000 Ом, лампочка, ключ, реостат, диод, светодиод, конденсатор емкостью 0,47 мкФ, катушка индуктивностью 33 мГн, набор катушек индуктивности.

Компьютер или планшет с программой Releon Lite.

Календарно-тематическое планирование (8 класс)

№ п/п	Дата проведения	Форма занятия	Количество часов	Тема занятий
1.		Беседа, практикум	1	Тепловые явления. Инструктаж по ТБ. Введение. Температура. Методы определения температуры тела. Знакомство с измерительными приборами для определения температуры тела. Практика: Знакомство с термометром. Измерение температуры с помощью датчика температур (Беспроводной мультидатчикReleonAir « Физика-5 »)
2.		Практическая работа, наблюдения и опыты.	1	Практическая работа: Исследование изменения со временем температуры нагреваемой/остывающей воды. Построение графика процесса.
3.		Беседа, практическая работа, наблюдения и опыты.	1	Тепловое расширение тел. Практическая работа: Изменение длины тела при нагревании и охлаждении. Изменение объема жидкости и газа при нагревании и охлаждении
4.		Беседа, практическая работа, наблюдения и опыты.	1	Процессы плавления и отвердевания. Практическая работа: Наблюдение за процессом плавления и кристаллизации парафина. Построение графика процесса.
5.		Беседа, практическая работа наблюдения и опыты.	1	Процессы испарения и конденсации. Практическая работа: Изучение скорости испарения различных жидкостей.

6.	Беседа, практическая работа, наблюдения и опыты.	1	Откуда берется теплота? Как сохранить тепло? холод? <i>Практическая работа</i> : Термос. Изготовление самодельного термоса.
7.	Беседа, исследовательская работа, сообщения учащихся, домашний эксперимент		Примеры теплопередачи в природе и технике. <i>Исследовательская работа</i> : изучение теплопроводности различных материалов. <i>Домашняя практическая работа</i> : Способы сохранения тепла в моем доме.
8.	Беседа, сообщения учащихся, изучение литературы, интернет- источников, изготовление модели, защита проекта	1	Как работает холодильник? Принцип действия холодильной машины. Домашняя практическая работа: Изготовление холодильника из подручных средств
9.	Беседа, исследовательская работа, сообщения учащихся, домашний эксперимент, сообщение.	1	Погода и климат. Влажность воздуха. Образование ветров. <i>Исследовательская работа</i> : Определение влажности воздуха в помещении с помощью комнатного термометра. <i>Домашняя исследовательская работа</i> : определить влажность воздуха в помещении. Узнать, как влияет влажность воздуха на человека и его самочувствие.
10.	Беседа, сообщения учащихся, изучение литературы, интернет-источников	1	 Тепловые двигатели: что с ними не так? <i>Исследовательская работа</i>: Влияние тепловых двигателей на окружающую среду. Тепловые двигатели: есть ли альтернатива? Что я могу сделать для будущего планеты?

11.	Представление результатов исследователь ской работы	1	Защита исследовательских работ
12.	Беседа, практическая работа исследователь ского характера	1	Защита исследовательских работ
13.	Беседа, практическая работа исследователь ского характера	1	Электрические явления и методы их исследования. Янтарные явления, открытые Фалесом из Милета. <i>Практическая работа</i> : Исследование взаимодействия заряженных тел Какими бывают носители заряда? Просмотр и обсуждение видео с сайта www.elementy.ru «Свободные носители заряда»

14.	Беседа,	1	Электричество на расческах. Осторожно статическое электричество. Есть ли польза
	сообщения		статического электричества? <i>Практическая работа</i> : Наблюдение электростатических
	учащихся,		явлений.
	изучение		
	литературы,		
	интернет-		
	источников,		
	практическая		
	работа		
	наблюдения и		
	опыты.		

15.	Беседа,	1	История изобретения и принцип действия гальванического элемента.
	сообщения		Практическая работа: Изобретаем батарейку. Создание гальванических элементов из
	учащихся,		подручных средств.
	изучение		
	литературы,		
	интернет-		
	источников,		
	практическая		
	работа		
	наблюдения и		
	опыты.		
16.	Беседа,	1	Сила тока, напряжение, сопротивление.
	практическая		<i>Практическая работа</i> : «Определение удельного сопротивления различных
	работа		проводников».
17.	Беседа,	1	Изучаем законы постоянного тока
	практическая		Практическая работа: Изучение последовательного и параллельного соединений
	работа		проводников
18.	Беседа,	1	Изучаем законы постоянного тока
	практическая		Практическая работа: Изучение последовательного и параллельного соединений
	работа		проводников
19.	Беседа,	1	Работа и мощность тока.
	исследователь		Домашняя исследовательская работа: «Расчет потребляемой электроэнергии
	ская работа		собственного дома».
20	Беседа,	1	Изучение теплового действия тока.
	практическая		<i>Практическая работа:</i> «Измерение КПД кипятильника»
	работа		
21	Беседа,	1	Изучение химического действия тока.
	практическая		Практическая работа: «Изучение явления электролиза»
	работа		,
<u></u>	1		

22	Беседа,	1	Изучение магнитного действия тока
	практическая		Практическая работа: «Сборка электромагнита и изучение его свойств»
	работа		
23.	Беседа,	1	Занимательные опыты с постоянными магнитами.
	наблюдения и		Практическая работа: Изучение спектров магнитных полей постоянных магнитов.
	опыты,		
	практическая		
	работа		
24.	Беседа,	1	Действие магнитного поля. Магнитное поле Земли. Компас. Принцип работы.
	наблюдения и		Ориентирование с помощью компаса.
	опыты,		Экспериментальная работа: «Компас. Принцип работы».
	практическая		
	работа		
25.	Беседа,	1	Магнитное поле в веществе
	наблюдения и		Экспериментальные задания по теме «Магнитное поле проводника с током»
	опыты,		
	практическая		
	работа		
26.	Беседа,	1	Оптические явления. Источники света. Как мы видим? Почему мир разноцветный?
	сообщения		
	учащихся,		
	изучение		
	литературы,		
	интернет		
27.	Беседа,	1	Как работают оптические приборы?
	сообщения		Практическая работа: Изучение оптических приборов
	учащихся,		
	изучение		
	литературы,		
	интернет		
28.	Беседа,	1	Оптические явления в природе.
	сообщения		Проект: оптика и оптические явления в природе
	учащихся,		
	изучение		
	литературы,		
	интернет		

29.	Беседа,	1	Оптические иллюзии. Не верь глазам своим.
	сообщения		Исследовательский проект: Путешествие в удивительный мир оптических иллюзий
	учащихся,		
	изучение		
	литературы,		
	интернет		
30.	Беседа,	1	Современная физика
	сообщения		Практикум «Где нужны физики? Различные направления современной физики:
	учащихся,		нанотехнологии, медицинская физика,
	изучение		ядерная физика, физика плазмы»
	литературы,		
	интернет-		
	источников,		
	практическая		
	работа		
31.	Беседа	1	Подготовка к проектной работе. Как подготовить индивидуальный проект?
			Выбор темы индивидуального проекта.
32.	Беседа,	1	Консультационное занятие. Подготовка индивидуального проекта.
32.	консультация		консультационное занятие. подготовка индивидуального проекта.
33.		1	Защита индивидуального проекта
34.		1	Подведение итогов работы за год. Поощрение учащихся, проявивших активность и усердие на занятиях.